Unique Integrated Testing Facility (UNITY) for Fusion Power Generation

Colin Baus^{1,2}, Shutaro Takeda^{1,3}, Satoshi Ogawa¹, Taishi Sugiyama¹, Yoshinao Matsunaga¹, Yoshifumi Kume¹, Masato Tabuchi¹, Takashi Ino¹, Andrea D'Angio¹, Richard Pearson¹, Keisuke Mukai^{1,2}, Keishi Sakamoto¹, Kiyoshi Seko¹, Taka Nagao¹, and Satoshi Konishi^{1,2}

¹ Kyoto Fusioneering,² Kyoto University, ³ Kyushu University

1. Introduction

No test facility for fusion power generation systems exists \rightarrow no demonstration of the feasibility of power generation by fusion.

• Engineering R&D for plant components (indispensable for the commercialization of fusion power generation) still in its infancy

No heat extraction and energy utilization from the breeding blanket have been demonstrated.

• Such tests are not planned for ITER and need to be demonstrated quickly for practical use

No high-temperature energy utilization system using liquid metal or molten salt has been demonstrated.

- A high temperature (1,000°C) energy cycle using liquid metal/molten salt must be demonstrated
- There are challenges inherent to fusion plants, such as tritium migration in the high-temperature cycle

Beyond lab-scale integrated power cycle R&D is needed before we can build a commercial fusion reactor!

2. Construction plan for UNITY

3. UNITY Project Timeline

Integrated divertor and gyrotron testing

• Demonstration and R&D of core Kyoto Fusioneering products for the fusion industry

4. Conclusion

• UNITY will provide the integrated fusion plant technology at TRL>6 to be available for the first fusion reactors after 2026.

Stage

(2025)

- UNITY can accommodate various plasma types (magnetic, inertial, innovative) for power conversion and fuel cycle.
- UNITY will be ready for collaboration and various business for commercial fusion for industrialization.

KYOTO FUSIONEERING

A. Blanket and Divertor Integrated Testing Section

Testing Capability for Multiple Blanket Types

- Experimental capability with multiple coolants including LiPb, Li, FLiBe, and H₂O).
- **Testing in 4 T Magnetic Field**
- Strong magnetic field with gradient to measure MHD effect in blanket module

Extraction of High-Temperature Coolant

- External heating to simulate volumetric heating & temperature distribution of up to 1,000°C
- Vacuum insulation to minimize heat loss

Coils coolant pipes

C. Fusion Fuel Cycle Demonstration Section

R&D and Demonstration of Tritium Recovery:

- · UNITY will demonstrate tritium recovery from the blanket for three primary coolants (FLiBe, LiPb, and Li) at relevant scales
- Tritium/droplet interaction code development for scaling of new generation devices

Tritium Handling and Storage

- R&D and demonstration of tritium handlings, including the pumps for tritiated gas
- · Assessment of detritiation and isotope separation technologies

Tritium extraction demonstration from LiPb Loop via Vacuum Sieve Tray [Okino 2019]

D. Tritium Pump Testing Section

Tritium Roughing Pump

High tritium compatibility •

> Oil-free, continuous operation is possible with high concentration of tritium

> > New roughing

- Handles air, helium, hydrogen, oxygen Almost same performance with different gas species (D2, He, T2...)
- Smaller pump train, no-metal bellows pump Substitute for a combination of scroll pump and metal bellow pump
- KF received prototype and testing with H/D ongoing

Proton Conductor Pump (PCP)

- Direct Internal Recycling (DIR) Low tritium inventory, smaller detritiation facilities
- pump design New prototype with Al2O3 tube manufactured for better vacuum, testing ongoing

PCP prototype

B. High-Temperature Heat Exchange and Extraction Testing Section

Developing for >50% thermal efficiency

- capable of performing heat exchange up to 1,000° **C** in a simulated fusion plant environment
- enables compatibility tests of liquid metal/molten salt with various materials
- Measurement of tritium permeation for complex geometries
- R&D on advanced manufacturing methods for SiCf/SiC components based on the technology developed at Kyoto University

Plate heat exchanger design

D. Energy Utilization Testing Section

UNITY will conduct the world's first power generation demonstration test at the end of 2024

- · Various power generation cycles from heat extraction from the blanket (Brayton cycle, Rankine cycle) under power plant conditions
 - World's first demonstration of power generation from a blanket
- This experiment will yield critical understandings of fusion power systems and key parameters required for designing a power plant
- High-temp heat exchange and tritium permeation to the generation system should not be underestimated
- UNITY will demonstrate alternative applications of high-grade heat, including hydrogen production

E. Multipurpose Testing Section

For corrosion testing under flow conditions, etc.

F. Gyrotron Operation Section

1 MW

KF Gyrotron already demonstrated 1 MW oscillation for each frequencies (28 GHz to 203 GHz)

Output Power Frequency Pulse Width Efficiency Mode Purity Conditioning Lead Time

Selectable^(a) from 28 GHz to 203 GHz ^(a) The frequency can be adjusted based on customer request CW operation >50%, from input power to output RF >90%, from TE mode to HE11 mode Shall be operated by KF

Approximately 20 months from order to delivery

Kyoto Fusioneering Ltd. Email: biz@kyotofusioneering.com

Digital Version of this Catalogue

